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ABSTRACT

In this article, a novel hybrid binary bat algorithm named HBBA is proposed for global optimization 
problems. First, to avoid simultaneous updating of bat velocity’s dimensional components, i.e., 
elements of velocity vector, a random black hole model is modified to adapt to binary algorithm 
for updating in unknown spaces for each dimensional component individually. Through this way, 
the search ability of bats around the current group best is increased greatly. Second, a time-varying 
v-shaped transfer function, rather than a time-invariant one as in closely related works, is proposed 
to map velocity in continuous search space to a binary one. This accelerates the speed to switch 
individuals’ positions, i.e., solutions in binary space. Third, a chaotic map is utilized to replace 
monotonous parameters in original binary bat algorithm, which is beneficial for avoiding premature 
convergence. Simulation results demonstrate the effectiveness of the proposed algorithm by three 
types of benchmark functions and unit commitment problem.

Keywords
Binary Bat Algorithm, Random Black Hole Model, Transfer Function, Composition Benchmark Function, Unit 
Commitment

INTRODUCTION

Metaheuristic optimization algorithms are typically used to solve some complex optimization problems 
including nonconvex and nonlinear ones, which generally cannot be well solved by conventional 
mathematical methods. Although the solution generated by heuristic algorithms may not be equal to 
the exact optimal one, it is generally acceptable for real world engineering optimization problems. 
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Therefore, heuristic optimization algorithms have gained considerable interests during the past 
few decades (Abualigah et al., 2021; Hashim & Hussien, 2022). Several excellent representatives 
include genetic algorithm (GA) (Holland, 1992), particle swarm optimization (PSO) (Kennedy & 
Eberhart, 1995), differential evolution (DE) (G. Wang et al., 2022), grey wolf optimizer (GWO) 
(Nadimi-Shahraki et al., 2022), harmony search (HS) (Abarajithan & Vijayarani, 2022), ant colony 
optimization (ACO) (Dorigo & Gambardella, 1997), and bat algorithm (BA) (X. Yang, 2010; Akila 
& Christe, 2022).

Nearly all heuristic optimization algorithms proposed at the beginning are devoted to solving 
continuous variable optimization problems. However, many optimization problems in reality have 
discrete binary search space such as feature selection (El-Kenawy et al., 2022), 0–1 knapsack problem 
(Du et al., 2023), and unit commitment problem (Reddy et al., 2018). Therefore, some binary 
optimization algorithms are proposed according to their corresponding continuous versions to deal 
with binary optimization problems. For example, a sine cosine hybrid optimization algorithm with 
modified whale optimization algorithm (SCMWOA) was proposed by El-Kenawy et al. (2022). Its 
aim was to take advantage of WOA and SCA to solve problems with continuous and binary decision 
variables. An artificial algae algorithm’s binary version (Turkoglu et al., 2022) was put forward to 
solve optimal attribute set for classification algorithms. A new binary multi-objective grey wolf 
optimizer was applied to dimensionality reduction problem in classification by Al-Tashi et al. (2020). 
By comparing and analyzing eight transfer functions including V-shaped and S-shaped, a binary 
quilibrium optimization algorithm was proposed by Abdel-Basset et al. (2021). A novel binary 
DE algorithm based on Taper-shaped transfer function (He et al., 2022) was proposed for solving 
knapsack problem and uncapacitated facility location problem. Besides, several other binary algorithms 
were proposed (Hichem et al., 2022; Pashaei & Pashaei, 2022; Usman et al., 2022) to solve feature 
selection problems. Although binary algorithms are proposed on the basis of continuous ones, there 
exist essential differences between them. Particularly, a transfer function is always required to map 
continuous space to a binary one in binary algorithm.

In the existing related works, the commonly used transfer functions are sigmoid function and its 
variants, both called S-shaped function (El-Kenawy et al., 2022; Pashaei & Pashaei, 2022). However, 
the application of S-shaped transfer function may slow down the convergence speed of algorithms 
because this type of function forces individuals to take values in 0 or 1. This means that the position 
will keep unchanged when speed increases. To overcome this drawback, V-shaped transfer function was 
proposed. The advantage of binary algorithms based on it is that they do not need to force individuals 
to take values in 0 or 1. More specifically, positions will keep unchanged if the corresponding velocity 
values are low, and will be replaced by their complements if the corresponding velocity values are 
high (Mirjalili & Lewis, 2013). This characteristic accelerates an individual’s position change when 
search speed is changed (Usman et al., 2022; Mirjalili et al., 2014). Although algorithms with V-shaped 
transfer functions always show better performance than those with S-shaped transfer functions, the 
former are easy to suffer from local optima or premature convergence since the intrinsic drawbacks 
of original continuous algorithms are inherited by the binary ones. To further improve the diversity of 
populations, a time-varying mirrored S-shaped transfer function was proposed by Beheshti (2020) to 
help particles escape local optima. The performance of this method was demonstrated to be superior 
to S-shaped and V-shaped transfer functions based on methods by several benchmark functions.

Binary bat algorithm (BBA) was first proposed based on continuous BA (Mirjalili et al., 2014). 
There are lots of artificial bats in BA or BBA whose objective is to find an optimal solution for an 
optimization problem. Each artificial bat has some properties, such as velocity and position just as 
in PSO and GWO. Moreover, some unique properties, such as frequency, also exist in artificial bats. 
In BBA, some rules about velocity and position updating of artificial bats are carried out to adapt to 
binary problems. Typically, V-shaped transfer function is introduced to map continuous value space 
to a binary one, and the position (which is a binary value of artificial bat) is updated according to the 
corresponding velocity vector (which is a continuous value). The newly generated position is then 
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regarded as the next base until the convergence rules are trigged. Based on BBA, several variants 
are developed in current related studies. For example, a binary cooperative BA (Zhang, 2014) was 
developed by integrating a weight parameter in velocity vector, and the transfer function was selected 
from four different V-shaped and S-shaped functions. An optimized binary BA (Gupta et al., 2019) 
was designed for feature selection. Remarkably, there are several drawbacks existing in original BBA 
and its variants:

(a) 	 The update method of velocity vector weakens the algorithm’s performance. In BBA, part of 
the dimensions in velocity vector are simply replaced by those randomly chosen from current 
group best. This means a further exploration or exploitation is lost in each iteration, especially 
for the search in unknown spaces.

(b) 	 The switching speed of individuals’ positions can be further increased. As stated previously, the 
time-varying S-shaped transfer function shows much better performance compared with S-shaped 
and V-shaped ones. This motivates us to further improve the performance of BBA.

(c) 	 BBA is easy to trap into local optima and, thus, may suffer from premature convergence. There 
exist two monotonous parameters in BBA, i.e., pulse emission rate and loudness, which decrease 
the probabilities of generating new solution and accepting new solution, respectively.

In this paper, a new hybrid binary bat algorithm named HBBA is proposed, which fully considers 
the above disadvantages. Compared with BBA, the following improvements are achieved:

1. 	 The random black hole model (J. Zhang et al., 2008) is modified and integrated into HBBA. 
Random black hole model is introduced and modified to realize the update in unknown spaces 
for each dimensional component of velocity vector separately, instead of directly substituting 
part of the dimensions by current group best as in BBA.

2. 	 A new time-varying V-shaped transfer function is proposed. Compared with V-shaped transfer 
function, a time-varying one provides a faster switching speed for individuals’ positions, i.e., 
values in binary space. This makes the proposed transfer function suitable for more complex 
composition functions (J. Liang et al., 2005).

3. 	 To avoid premature convergence, a chaotic map is introduced in HBBA. Due to its nonrepetition 
characteristic, a chaotic map is introduced in HBBA to replace monotonous parameters to mitigate 
premature convergence problem.

The remainder of this paper is organized as follows. Section 2 describes original BA and BBA 
briefly. Section 3 explores the approaches to improve the performance of BBA for binary problems 
and proposes a new binary algorithm, HBBA. Section 4 gives the parameters sensitive analysis of 
the proposed algorithm and demonstrates the performance of HBBA by some experiments based on 
unimodal, multimodal, composite benchmark functions, and an engineering optimization problem. 
Concluding remarks and several future directions are given in Section 5.

ORIGINAL CONTINUOUS AND BINARY BAT ALGORITHM

This section briefly describes original principles of BA and BBA and gives the pseudo code of them.

Original Bat Algorithm
BA is proposed based on the hunting behavior of bats. Generally, nearly all bats use echolocation 
to detect obstacles or prey and distinguish directions. For example, when bats look for prey, they 
always fly randomly with a slow emission rate and a high loudness of acoustic pulses at first. Once 
a prey locates in some bat’s hunting range, the emission rate will be increased while the loudness 



International Journal of Swarm Intelligence Research
Volume 15 • Issue 1

4

is decreased, and the pulse can keep going for a few milliseconds. This process is repeated until the 
prey is captured.

Inspired by the behavior of bats, the pulse frequency f , speed v  and position x  of bats at time 
t  are mathematically described as follows:

f f f f
i
= + −

min max min
( )k 	 (1)

v v x G f
i
t

i
t

i
t

b
t
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where f
max

 and f
min

 are the maximum and minimum frequency of pulse, respectively; k  is a random 
number in (0,1) drawn from a uniform distribution; G

b
t  is the global best at time t .

In addition, a random walk is defined for local search to provide more diversity:
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t

b
t

,
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where s  is a random number in (-1,1) drawn from a uniform distribution, and A  is the average value 
of loudness for all bats.

To model the change of pulse emission rate r and loudness A , the following rules are given:

r r t
i
t

i
+ = − −1 0 1( exp( ))q 	 (5)

A A
i
t

i
t+ =1 a 	 (6)

where r
i
0  is the initial pulse emission rate, q  and a  are both constants in (0,1). The pseudo code 

of BA is listed as follows:

Algorithm 1: Bat algorithm

Input: Loudness A
i
, frequency f

i
, pulse rates  r

i
, population size 

n  and max iterations N
gen

Output: The optimal solution G
b
t  and best fitness f

b

1:  Get fitness values of all individuals and calculate current 
group best 
2:  while t N<

gen
 do

3:       while i n£  do
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4:            Generate new solution by adjusting frequency and 
velocity according to Eq. (1)-(3) 
5:            if rand r

i
>  then

6:                 Select a solution among the best solutions 
7:                 Generate a new solution using Eq. (4) 
8:            end if 
9:            Generate new fitness value f

new

10:            if rand A i< ( )  and f f G
b
t

new
< ( ) then

11:                   Accept the new solution 
12:                   Change r  and A  according to Eq. (5) and 
Eq. (6) 
13:            end if
14:            Rank solutions and find the optimal solution G

b
t

15:       end while
16:  end while
17:  Present the final solution

Original Binary Bat Algorithm
BA is only suitable to continuous problems. However, in binary space, algorithms must be faced with 
the condition that there are only two values, i.e., 0 and 1 in binary domain. Therefore, the position 
updating rule Eq. (3) cannot work anymore in binary space, and the relation must be found to connect 
individuals’ velocities and positions.

Position updating in binary space can only change in 0 or 1. In binary algorithms, this change 
should be accomplished by individuals’ velocities. The key lies in how a continuous value (i.e., 
velocity of individual) can be used to update the position in binary space. Transfer function is a 
commonly used way to deal with this issue (Aslan et al., 2019). In BBA, a V-shaped transfer function 
is proposed as follows:

V v t v t
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where x t
i
k ( )denotes the i -th artificial bat at iteration t  in the k -th dimension; x t

i
k ( )-1  means the 

complement of x t
i
k ( ) , and rand  is a random number in (0,1). The figure of V-shaped transfer function 

is shown in Figure 1(a). Compared with sigmoid transfer function (Figure 1[b]), which is used in 
other algorithms, V-shaped transfer function provides individuals higher velocity to change their 
positions in binary space. Through this method, the search process of continuous search space can 
be mapped to a binary one. This is also the main difference between BA and BBA. The pseudo code 
of BBA is shown in Algorithm 2.
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Algorithm 2: Binary bat algorithm

Input: Loudness A
i
, frequency f

i
, pulse rates  r

i
, population size 

n  and max iterations N
gen

Output: The optimal solution G
b
t  and best fitness f

b

1:  Get fitness values of all individuals and calculate current 
group best 
2:  while t N<

gen
 do

3:       while i n£  do
4:            Generate new solution by adjusting frequency and 
velocity according to Eq. (1)-(2) 
5:            Calculate V-shaped transfer function value by Eq. 
(7) 
6:            Update solutions by Eq. (8) 
7:            if rand r

i
>  then

8:                 Select G
b
t  among the current best solutions

9:                 Change some dimensions in v  based on G
b
t

10:            end if 
11:            if rand A i< ( )  and f f G

b
t

new
< ( ) then

12:                   Accept the new solution 
13:                   Change r  and A  according to Eq. (5) and 
Eq. (6) 
14:            end if
15:            Rank solutions and find the optimal solution G

b
t

16:       end while
17:  end while
18:  Present the final solution

Figure 1. (a) V-Shaped transfer function in BBA, (b) Sigmoid transfer function
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THE PROPOSED BINARY ALGORITHM

A new hybrid binary bat algorithm named HBBA is proposed in this section. Specifically, the following 
steps are improved compared with original BBA: First, individuals’ exploration and exploitation are 
enhanced by integrating random black hole model (H. Zhang et al., 2020). Second, to cope with the 
challenge of composition test functions (Gupta et al., 2019), a new time-varying V-shaped transfer 
function is proposed. Third, a chaotic map is introduced to improve the diversity of HBBA.

Random Black Hole Model
A black hole in a galaxy can come from any mass that collapses down to the Schwarzschild radius 
(Bambi et al., 2019). Theoretically, the escape speed in a black hole is equal to the speed of light. 
However, since no object can go faster than light, any object located in the effective range of a black 
hole will be absorbed by it.

According to a real black hole, a random black model is proposed by J. Zhang et al. (2008), where 
each particle in PSO is treated as a star, and the corresponding fitness value is gravity. Thus, the 
position of a particle is influenced by the gravity of group best and local optimum at every iteration. 
Generally, the real global optimum is unknown. Therefore, the current group best is treated as the 
base point for generating a black hole in each iteration.

This idea is adopted in RCBA (H. Liang et al., 2018), and the schematic is shown in Figure 2. 
As seen in the figure, r

e
 represents the effective radius of the base point (it means that a new black 

hole will be generated in this range); G
b
t  is the base point, i.e., the current group best; p  is a constant 

threshold value located in (0,1), and m  is a random number between 0 and 1. If the randomly generated 
number m  is not greater than p , a new random black hole is generated around G

b
t  in ( , )− +r r

e e
. 

Then, the new solution is updated as follows:

x t G r
i
k

b
t

e
( ) *+ = +1 t 	 (9)

where t ∈ − +[ , ]1 1  obeys uniform distribution, and x t
i
k ( )+1  is the k -th dimension in the i -th 

individual at iteration t +1 . If m p> , the position is updated according to Eq. (3).
However, the above process is only suitable for continuous problems because the position 

x t
i
k ( )+1  is changed in continuous domain. For discrete binary problems, the original random black 

hole model should be modified. As analyzed in Section 2, the rule for updating position, i.e., Eq. (3), 

Figure 2. Schematic of random black hole model
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is not suitable in binary space anymore, and the position updating must depend on the velocity’s 
change of artificial bat.

Based on the above analysis, the following rule is performed immediately once velocity update 
rule Eq. (2) is executed:

v t G t r
i
k

b
k

e
( ) ( ) *+ = +1 t 	 (10)

The update process for a modified random black hole model in this study is described in 
Algorithm 3.

Algorithm 3: Update process for a modified random black hole model

Input: G
b
t , p  and r

e

Output: v
i
k

1:  for each dimension in  v
i
k do

2:        Generate a random value for u
3:        if u p<  then
4:            Update a dimension for v t

i
k ( )+1  by Eq. (10)

5:        end if
6:   end for

The new update rule for velocity, i.e., Eq. (10), takes several superiorities:

(a) 	 Compared with Eq. (2), Eq. (10) can realize each dimension’s updating in velocity vector 
v  separately. Furthermore, as seen in line 3 of Algorithm 3, Eq. (10) is only executed when 
u p< . It means that only part dimensions are updated in each iteration step. This 
characteristic is beneficial for improving global search ability of artificial bats and providing 
more diversity of solutions.

(b) 	 The ability of exploration and exploitation for artificial bats is enhanced. At the earlier stage of 
algorithm’s iteration, r

e
 is assigned with a relatively big value. This brings a wider search space 

in preliminary stage of iterations and, hence, the ability of exploration is enhanced. As iteration 
goes on, a relatively good solution is obtained, and a small search space should be provided to 
get more precious solution around current group best. One way is to decrease the effective radius 
r
e

 and, thus, the ability of exploitation is also enhanced.

Time-Varying V-Shaped Transfer Function
The velocity v  generated by Eq. (10) is a continuous value and must be mapped into a binary space. 
The commonly used method is to introduce transfer function into algorithms, such as S-shaped, 
V-shaped, and linear normalized transfer function. However, algorithms with the three types of transfer 
functions show slow convergence speed and sometimes may trap into local optima (Beheshti, 2020).

To overcome the above shortcoming, a time-varying mirrored sigmoid transfer function (Beheshti, 
2020) is introduced, as shown in Figure 3(a). As seen in this figure, two sigmoid functions are 
introduced as follows:

S v t e
i
k

t

v tt i
k

( ( ), ) / ( )( ( ))+ = + − +1 1 1 1h h 	 (11)
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where h
t
 is a time varying parameter, and k d= 1  in binary space (d  is the dimensions of a 

solution in binary space). h
t
 is assigned a relatively big value at first, and gradually decreased. By 

this means, a strong exploration is achieved at the beginning of iteration, and a well exploitation is 
obtained as strong exploration is achieved at the beginning of iteration, and a well exploitation is 
obtained as iteration goes on.

Inspired by the time-varying mirrored S-shaped transfer function, a time-varying V-shaped transfer 
function is proposed in this paper. This idea comes from the fact that a V-shaped transfer function 
provides a higher speed to switch individuals’ positions compared with an S-shaped transfer function 
(Mirjalili et al., 2014). Therefore, a time-varying V-shaped transfer function is generated as below:

′ + =
+

V v t
v t

e
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k i

k

t

( ( )) arctan(
( )
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π θ
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where q
t
 is a time varying parameter as iteration goes on. This way, artificial bats are forced to search 

in binary space. Figure 3(b) shows the curves of a proposed time-varying V-shaped transfer function. 
Compared with a time-varying mirrored S-shaped transfer function, the proposed time-varying 
V-shaped transfer function provides not only a faster switching speed but also a strong exploration 
and exploitation for individuals, and it is especially suitable for complex optimization problems (e.g., 
composite benchmark functions [J. Liang et al., 2005]).

Figure 3. (a) Time-Varying mirrored sigmoid transfer function, (b) Proposed time-varying v-shaped transfer function
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Chaotic Map
In mathematics, a chaotic map exhibits some sort of chaotic behavior. Chaotic systems are generally 
characterized by their intrinsic stochastic properties, which have nonrepetition characteristics and 
an ergodic nature (H. Liang et al., 2018; Suresh & Lal, 2017). These features determine that chaotic 
maps are especially suitable to replace some parameters in metaheuristic algorithms. This way, the 
diversity of algorithms is increased and, hence, the premature convergence is mitigated or even 
avoided. A chaotic map has been successfully applied to many heuristic algorithms (Hematpour & 
Ahadpour, 2021; Qin et al., 2017).

There are two monotonous parameters, i.e., pulse emission rate r  and loudness A  in BBA or 
BA. As seen in Eq. (5) and Eq. (6), r  is a monotonically increasing sequence and A  is a monotonically 
decreasing one. Indeed, the above features limit the performance of BA (see lines 5 and 10 in Algorithm 
1) and BBA (see lines 7 and 11 in Algorithm 2). For example, in BBA, a new solution can be accepted 
when one condition rand r

i
>  is satisfied (see line 11 in Algorithm 2). However, since A  is a 

monotonically decreasing parameter, the chance to accept new solution is decreased as iteration goes 
on. Therefore, some relatively acceptable solutions may be missed. To overcome this shortcoming, 
a chaotic map is introduced to replace r and A to increase the diversity of the algorithm.

The Proposed Binary Algorithm
By integrating the modified random black hole model and the proposed time-varying V-shaped 
transfer function, artificial bats have the ability to find more acceptable solutions in binary search 
space. The schematic of mapping continuous variable v  to a discrete value x  in binary space is 
shown in Figure 4.

The pseudo of proposed binary algorithm HBBA is shown in Algorithm 4, and the underlined 
parts are the improvements, which are different from BBA.

Algorithm 4: The proposed binary bat algorithm (HBBA)

Input: Loudness A
i
, frequency f

i
, pulse rates r

i
, population size 

n  and max iterations N
gen

Output: The optimal solution G
b
t  and best fitness f

b

1:  Get fitness values of all individuals and calculate current 
group best 
2:  while  t N<

gen
do

Figure 4. The schematic of mapping a continuous space to a binary one
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3:       while i n£  do
4:            Generate new solution by adjusting frequency and 
velocity according to Eq. (1)-(2) 
5:            if rand r

i
>  then

6:                 Update velocity v  by the modified random black 
hole model (i.e., Algorithm 3) 
7:            end if 
8:            Calculate time-varying V-shaped transfer function by 
Eq. (13) 
9:            Update solutions by Eq. (14) 
10:            if rand A i< ( )  and f f G

b
t

new
< ( ) then

11:                   Accept the new solution 
12:                   Change the values of r  and A  by chaotic 
map 
13:            end if
14:            Rank solutions and find the optimal solution G

b
t

15:       end while
16:  end while
17:  Present the final solution

The main process is addressed as follows:

(a) 	 Initialize parameters of HBBA including loudness A
i
, pulse emission rate r

i
, pulse frequency 

f
min

 and f
max

. The initialized velocities of populations are all set to 0. The positions of populations 
are random initialized in {0, 1} which are shown as below:
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x x x
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

	 (15)

where the length of each dimension x
i
k  should be defined according to different problems.

(b) 	 Get fitness values according to the above initialized positions and find the current group best 
Gt

b
.

(c) 	 At the beginning of iterations, velocity is first updated by Eq. (2), and then is further improved 
by the modified random black hole model (see lines 6-9). This way, each dimension in v

i
k  is 

updated separately.
(d) 	 Update positions by the proposed time-varying V-shaped transfer function, i.e., Eq. (13) and 

(14). This step maps the continuous value v
i
k  to the binary solution x

i
k .

(e) 	 If the condition in line 12 is satisfied, the new generated solution is accepted. Pulse 
emission rate r and loudness A  are respectively updated by chaotic map instead of by 
Eq. (2) and (3). This is helpful for improving the diversity of solutions, and thus mitigating 
premature convergence.



International Journal of Swarm Intelligence Research
Volume 15 • Issue 1

12

EXPERIMENTAL RESULTS

Three types of benchmark functions are employed to evaluate the superiority of the proposed binary 
algorithm HBBA in this section, including unimodal, multimodal, and composite benchmark functions 
(J. Liang et al., 2005; X. Yang, 2010), which are given in Tables 1 to 3, respectively. The description 
of composition functions is given in J. Liang et al. (2005), which interested readers can refer to for 
details. In addition, a unit commitment problem further validates the effectiveness of the proposed 
HHBA in an engineering optimization problem. The positions, i.e., solutions, are expressed by binary 
numbers with 16 bits in each dimension, and the first bit represents the symbol (‘0’ denotes a positive 
number and ‘1’ denotes a negative number). The following gives the simulation results for the above 
three types of benchmark functions. Because BBA achieves better solutions compared to BPSO 
and GA (Mirjalili et al., 2014), this paper puts the emphasis on the comparison between HBBA and 
BBA. This simulation is executed in MATLAB on INTEL i5-11300H, 3.10GHz, and 16 GB RAM.

Parameter Sensitive Analysis
In order to improve the reliability and generality of the proposed algorithm, this subsection focuses 
on the sensitivity analysis of the algorithm parameters that are required to be analyzed, which are the 
population size n , max iterations N

gen
 and the effective radius of random black role model r

e
 for 

the proposed algorithm from Algorithm 4. The values of f
min

 and f
max

 are set to 0 and 2 from the 
BBA (Mirjalili et al., 2014). As for the modified random black hole model, threshold p  is assigned 
as 0.5. Besides, the unimodal function f

5
�, f

6
�, multimodal function f

8
, f

10
, and composition function 

Table 1. Unimodal benchmark functions

Function Range f
min

f x
i

i

k

1
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1
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=
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f x x
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=
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f
17

, f
18

 are decided to be representative functions for parameter sensitive analysis. The following 
‘Ave’, ‘SD’, ‘Med’ and ‘Time’ denote the average value, standard deviation, median, and average 
execution time, respectively. The specific analyses of the above parameters are as follows.

The population, as one of the most important parameters in the algorithm, has a significant 
impact on the convergence and robustness of the algorithm. Young’s research suggests that a population 
size between 15 and 50 would be appropriate for most issues (Mirjalili et al., 2014). In order to analyze 
the effect of population size on the convergence and robustness of the proposed algorithm, we set 
the population size to 10, 20, 30, 40, and 50 to test the representative function for 30 independent 
runs, as shown in Table 4. It can be seen from Table 1 that, as the population size grows, both the 
convergence and robustness of the algorithm perform better, except for f

10
. Therefore, the best 

population size for the proposed algorithm is 50.
The number of iterations of the algorithm is also vital to the convergence results. Therefore, the 

iteration number of 100, 200, 300, 400, and 500 are employed to test the representative functions to 
determine which one is better for the proposed algorithm for 30 independent runs. It can be seen from 
Table 5 that the average convergence result and standard deviation of proposed algorithm for 500 
iterations are the best among all the results of the comparison iteration experiments. Although the 
standard deviations of f

8
 and f

18
 at 500 iterations are not best values for the proposed algorithm in 

all iterations, they also perform well. In terms of the results, the maximum iteration of 500 is suited 
for the proposed algorithm.

Table 2. Multimodal benchmark functions

Function Range f
min

f x x
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From the description of the random black hole model in Section 3, it can be seen that r
e

 has a 
significant effect on the ability of exploration and exploitation for artificial bat. Thus, a suitable r

e
 

is crucial for the performance of the proposed algorithm. According to the analysis of H. Liang (2018), 
we set r

e
 to 3 group of piecewise parameters, such as r

e1
, r
e2

, and r
e3

, respectively. Besides, to 
further analyze the effect of r

e
 size on the convergence and robustness of the proposed algorithm, 

we set r
e4

, r
e5

 as 0.1, and 0.01, respectively. The five group of r
e

 are applied to test on representative 
function for 30 independent runs, which are shown in Table 6. It can be clearly seen that the proposed 
algorithm performs best in unimodal and multimodal benchmark function f

5
, f

6
, f

8
, and f

10
 when 

using r
e4

. However, the proposed algorithm obtains the smallest average results and standard deviation 
using r

e2
 in the representative composite benchmark functions. Therefore, r

e
 in this paper is set to 

r
e4

 for unimodal, multimodal benchmark functions and r
e2

 for composite benchmark functions.

Simulations for Unimodal Benchmark Functions
This subsection gives the simulation results for unimodal benchmark functions, which are listed in 
Table 4. The dimension for each function is set to 5, and there are a total of 30 independent runs for 
each function. The statistical results are shown in Table 7, and the convergence processes of best 
solutions for functions f

1
 to f

7
 are given in Figures 5 and 6.

Table 3. Composite benchmark functions

Function Definition Coefficients f
min

f
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Table 7 gives the comparison results among the proposed binary algorithm HBBA_1(only 
modified random black hole model), HBBA_2(modified random black hole model and time-
varying V-shaped transfer function), HBBA(modified random black hole model, time-varying 
V-shaped transfer function and chaotic map), BBA, BPSO, GA and binABC (Kiran, 2015) for 
unimodal benchmark functions. Each simulation is executed in 30 independent runs. The data 

Table 4. Population size analysis of representative functions for the proposed algorithm

Function 10 20 30 40 50

f
5

 Ave
SD

3.15E+00 3.03E+00 2.78E+00 2.75E+00 2.68E+00

2.49E-01 2.41E-01 3.36E-01 2.11E-01 2.00E-01

f
6

 Ave
SD

5.96E-01 4.44E-01 2.94E-01 2.94E-01 2.27E-01

1.50E-01 1.32E-01 1.16E-01 1.27E-01 9.69E-02

f
8

 Ave
SD

-1.30E+03 -1.42E+03 -1.55E+03 -1.58E+03 -1.58E+03

1.44E+02 1.37E+02 1.31E+02 1.36E+02 1.30E+02

f
10

 Ave
SD

8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

0 0 0 0 0

f
17

 Ave
SD

1.92E+02 1.77E+02 1.75E+02 1.66E+02 1.55E+02

3.60E+01 3.82E+01 3.02E+01 3.43E+01 2.99E+01

f
18

 Ave
SD

3.82E+02 3.62E+02 3.50E+02 3.53E+02 3.38E+02

2.43E+01 1.83E+01 2.07E+01 1.51E+01 1.50E+01

Table 5. Max iteration analysis of representative functions for the proposed algorithm

Function 100 200 300 400 500

f
5
� Ave

SD

2.96E+00 2.95E+00 2.78E+00 2.75E+00 2.68E+00

4.03E-01 3.11E-01 3.63E-01 3.36E-01 3.36E-01

f
6

 Ave
SD

4.70E-01 4.36E-01 3.44E-01 3.84E-01 2.27E-01

1.21E-01 1.26E-01 1.12E-01 1.08E-01 9.69E-02

f
8

 Ave
SD

-1.39E+03 -1.43E+03 -1.45E+03 -1.48E+03 -1.58E+03

1.19E+02 2.07E+02 1.40E+02 1.66E+02 1.30E+02

f
10

 Ave
SD

8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

0 0 0 0 0

f
17

 Ave
SD

2.84E+02 2.19E+02 1.89E+02 1.77E+02 1.55E+02

4.96E+01 3.40E+01 3.44E+01 3.72E+01 2.99E+01

f
18

 Ave
SD

4.58E+02 3.87E+02 3.65E+02 3.56E+02 3.38E+02

3.28E+01 1.79E+01 2.02E+01 1.25E+01 1.50E+01
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about BBA, BPSO and GA come from Mirjalili et al. (2014). As seen in Table 5, for unimodal 
functions f

1
 to f

4
, HBBA obtains the real global optimal solutions, i.e., 0, in all 30 independent 

runs. For BBA, BPSO, GA and bin ABC, the medians in 30 independent runs for functions f
1

 
to f

4
 are 1.2037, 4.6684, 2.6534, 405.42, respectively. It means that the four algorithms cannot 

get the real global optimal solutions. As for f
5

 to f
7

, HBBA gets the smallest values in all the 
four items, i.e., Ave, SD, and Med compared with values obtained by BBA, BPSO, GA and 
binABC. For example, the medians obtained by HBBA are 2.6767, 0.2241, and 9.22e-5 for f

5
 

to f
7

, respectively. These values are about 19.54%, 21.94%, and 0.74% compared with the 
corresponding values generated by BBA, respectively. For HBBA_1, HBBA_2 and HBBA, the 
average value and medians obtained by HBBA are best, and the average value and medians 
obtained by HBBA_2 are better than that of HBBA_1. It can be clearly demonstrated that every 
improvement to the BBA in this paper is effective.

The convergence curves of the best solutions for f
1

 to f
7

 are given in Figures 5 and 6. As 
seen in the figures, HBBA achieves excellent convergence characteristics. For example, the group 
bests at the 100-th iteration obtained by HBBA are about 0, 0, 0, 0, 2.338, 0.03573, and 0.0006704 
for f

1
 to f

7
, respectively, while for BBA (the performance of BBA is superior to BPSO and GA 

according to [Mirjalili et al., 2014], so HBBA is only compared with BBA in this paper), the 
corresponding values are about 8.5, 0.47, 64.3, 5.9, 100.1, 9.9, and 0.012, respectively (Mirjalili 
et al., 2014). Meanwhile, the optimal solutions obtained by HBBA are also smaller than the 
corresponding values obtained by BBA. Therefore, the convergence performance of HBBA is 
superior to BBA totally.

Based on the above analysis, it can be concluded that HBBA not only achieves the best solutions 
but also obtains the best convergence performance compared to BBA, PSO, and GA for unimodal 
benchmark functions f

1
 to f

7
.

Table 6. The effective radius of random black role model analysis of representative functions for the proposed algorithm

Function r
e1

r
e2

r
e3

r
e4

r
e5

f
5
� Ave

SD

2.68E+00 3.49E+00 2.69E+00 2.57E+00 3.01E+00

3.48E-01 3.33E-01 4.27E-01 3.36E-01 3.42E-01

f
6

 Ave
SD

2.73E-01 6.35E-01 2.69E-01 2.27E-01 4.36E-01

1.12E-01 1.72E-01 1.13E-01 9.69E-02 1.63E-01

f
8

 Ave
SD

-1.63E+03 -1.62E+03 -1.58E+03 -1.63E+03 -1.46E+03

1.66E+02 2.07E+02 1.40E+02 1.19E+02 1.30E+02

f
10

 Ave
SD

8.88E-16 1.65E-02 8.88E-16 8.88E-16 8.88E-16

0 3.49E-02 0 0 0

f
17

 Ave
SD

1.88E+02 1.64E+02 1.81E+02 1.89E+02 2.02E+02

2.73E+01 2.40E+01 2.81E+01 3.98E+01 3.52E+02

f
18

 Ave
SD

3.39E+02 3.28E+02 3.49E+02 3.51E+02 3.38E+02

4.62E+01 2.59E+01 2.98E+01 4.12E+01 2.96E+01
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Simulations for Multimodal Benchmark Functions
A total of seven multimodal benchmark functions are introduced to verify the effectiveness of the 
proposed algorithm, HBBA. The simulation results are shown in Table 8, and the convergence curves 
of best solutions for functions f

8
 to f

14
 are given in Figure 7.

Table 7. Simulation results for unimodal benchmark functions in 30 independent runs

Function HBBA_1 HBBA_2 HBBA BBA BPSO GA binABC

f
1
� Ave

SD 
Med

0.0020 0 0 1.8518 5.2965 10.0705 453.45

0.0110 0 0 2.4981 2.7657 24.9445 234.14

0.0052 0 0 1.2037 4.6684 2.6534 405.42

Time 3.1982 3.2581 2.8370 0.3838 0.5844 1.5705 0.2811

f
2

 Ave
SD 
Med

3.15E-04 0 0 0.0965 0.2292 0.2695 3.4323

1.75E-03 0 0 0.0646 0.0938 0.2379 1.0031

1.72E-03 0 0 0.0880 0.2373 0.1724 3.9173

Time 3.7118 3.0492 2.8285 0.3632 0.5784 1.5625 0.2827

f
3

 Ave
SD 
Med

2.70E-04 2.01E-04 0 7.8103 22.489 555.90 411.12

1.48E-03 8.54E-04 0 9.7981 14.114 250.69 171.09

7.83E-04 3.58E-04 0 4.9511 19.099 545.68 406.06

Time 3.1909 3.1479 2.8685 0.3628 0.6102 1.6234 0.2861

f
4

 Ave
SD 
Med

0 0 0 1.1526 2.6088 1.5937 15.232

0 0 0 0.6140 0.8389 1.2135 2.8518

0 0 0 1.0469 2.4961 1.7188 14.820

Time 3.0484 2.9475 2.8848 0.3685 0.6060 1.6525 0.3000

f
5

 Ave
SD 
Med

3.1111 2.9961 2.6767 25.074 148.08 369.75 83.19

0.3422 0.5206 0.2974 28.443 137.19 342.88 155.51

3.5845 3.1526 2.8178 14.932 96.094 305.55 125.23

Time 2.9038 2.8007 2.8109 0.3389 0.5702 1.5375 0.2671

f
6

 Ave
SD 
Med

0.5738 0.3360 0.2241 2.6993 8.4966 6.9842 435.33

0.1550 0.1667 0.1586 7.0104 6.1409 7.0104 247.11

0.6125 0.4265 0.3021 1.5588 7.6725 4.6712 440.29

Time 2.9606 2.8254 2.8836 0.3503 0.5763 1.5683 0.2760

f
7

 Ave
SD 
Med

3.61E-04 1.80E-04 9.14e-5 0.0060 0.0155 0.0472 3.22E-03

2.70E-04 1.51E-04 1.21e-4 0.0044 0.0075 0.0436 2.22E-03

3.98E-04 3.02E-04 4.22e-5 0.0057 0.0140 0.0348 2.83E-03

Time 0.9189 0.90379 0.74669 0.1914 0.2772 1.0258 0.2033
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Figure 5. Convergence curves of best solutions for unimodal function ( f f
1 4
- ) (Red-HBBA, Black-BBA, Blue-BPSO, Green-GA)

Figure 6. Convergence curves of best solutions for unimodal function ( f f
5 7
- ) (Red-HBBA, Black-BBA, Blue-BPSO, Green-GA)
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The comparison results are given in Table 8. It can be seen that HBBA achieves all the best 
solutions in average, standard deviation, and median for the seven multimodal benchmark functions. 
For functions f

9
, f

11
, and f

14
, the real global optimal solutions (i.e., 0, 0, -1) are all obtained by 

HBBA. For function f
10

, the global optimal solution generated by HBBA is about 8.882e-16 in all 
30 independent runs, which is very close to the real global optimal solution 0. For BBA, BPSO, GA 
and binABC, the obtained optimal solutions are obviously bigger than those by HBBA for functions 
f
9
, f

10
, f

11
 and f

14
. For function f

8
, the medians of optimal solutions achieved by the HBBA and 

other four comparison algorithms are -1903.24, -994.8, -992.4, -918.6 and -1547.78, respectively, 
and the real minimum value of f

8
 is -2094.9145. For function f

12
, HBBA ranks in the top two for 

median value in the four algorithms and obtains best average values. As for function f
13

, the average 
and median values obtained by HBBA are very close to the corresponding ones by BBA. More 
importantly, the real optimal solution of f

13
 (i.e., -1) is hit by 15 counts in total 30 independent runs 

by HBBA. Therefore, HBBA gets much better solutions compared to BBA, BPSO, GA and binABC 
for multimodal benchmark functions. In addition, it can be seen that the best average and median 
values are obtained by HBBA compared to BBA,HBBA_1 and HBBA_2 except f

13
. This is mainly 

because the update in unknown spaces for each dimensional component of velocity vector separately 
is realized by the modified random black hole model, and the chaotic map effectively avoids the 
premature convergence problem.

The convergence curves of best solutions obtained by HBBA are shown in Figure 7. Among 
them, the numbers of the convergence steps of functions f

9
, f

10
, f

11
, and f

14
 are 38, 15, 21, and 17, 

respectively, while the corresponding numbers of convergence steps obtained by BBA are about 375, 
395, 430, and 400, respectively (Mirjalili et al., 2014). For functions f

8
, f

12
, and f

13
, the final optimal 

solutions obtained by HBBA are obviously superior to other solutions. Especially, for functions f
8
, 

f
9
, f

11
, f

13
, and f

14
, the real global optimal solutions are found by HBBA, which are 0, 0, 0, -1, and 

-1, respectively.
Therefore, whether on the optimal solutions or on the convergence processes, HBBA achieves 

much better performance compared to the other three algorithms for the above multimodal benchmark 
functions.

Simulations for Composition Benchmark Functions
Several composition benchmark functions (Mirjalili et al., 2014) are introduced to verify the 
performance of HBBA in this subsection. This type of benchmark function is composed of different 
compositions including sphere function, Griewank’s function, Rastrigin’s function, Weierstrass’s 
function, and Ackley’s function. The different compositions increase the difficulty for algorithms to 
find the optimal solutions. To effectively deal with this problem, the proposed time-varying V-shaped 
transfer function is applied to this type of function to help find more accurate solutions.

The simulation results are given in Table 9. It can be seen that HBBA achieves much better 
solutions for functions f

15
, f

16
 and f

19
. The medians for f

15
, f

16
, and f

19
 are about 6.0678, 36.5638, 

and 24.4591, respectively, while the corresponding medians obtained by BBA are about 78.7049, 
154.589, and 163.111, which are nearly 13, 4.2, and 6.7 times of the solutions obtained by HBBA, 
respectively. For function f

17
, although BBA gets the smallest average value, the difference between 

HBBA and BBA is only about 1.3440 (150.985-149.641). More important, the median obtained by 
HBBA (i.e., 142.896) is smaller than the corresponding value (i.e., 152.153) obtained by BBA. 
Therefore, for function f

17
, the quality of solutions in total 30 independent runs obtained by HBBA 
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is superior to the solutions obtained by BBA. For functions f
18

 and f
20

, HBBA gets second in the 
four comparison algorithms. In addition, HBBA_2 achieves much better solutions than that of 
HBBA_1. This is mainly because of the fact that time-varying V-shaped transfer function provides 

Table 8. Simulation results for multimodal benchmark functions in 30 independent runs

Function HBBA_1 HBBA_2 HBBA BBA BPSO GA binABC

f
8
� Ave

SD 
Med

-1474.86 -1843.17 -1959.67 -985.3 -988.4 -929.3 -1565.13

153.92 114.79 88.046 27.579 14.219 27.952 84.107

-1428.75 -1835.25 -1903.24 -994.8 -992.4 -918.6 -1547.78

Time 3.8306 3.0546 2.9468 0.3655 0.6061 1.6854 0.4204

f
9

 Ave
SD 
Med

0.0367 6.46E-07 0 1.5850 4.9777 2.1896 18.145

0.1836 3.54E-06 0 1.3353 2.5979 1.8330 3.5326

0.0258 5.28E-07 0 1.2682 5.2827 1.9902 18.473

Time 3.0147 2.9169 2.9226 0.3508 0.5974 1.5962 0.3627

f
10

 Ave
SD 
Med

8.882e-16 8.882e-16 8.882e-16 1.1560 2.7256 1.3999 10.598

0 0 0 0.7179 0.1302 1.3381 1.2345

8.882e-16 8.882e-16 8.882e-16 0.9589 0.3862 2.3168 10.920

Time 3.2138 2.9286 2.8846 0.3669 0.6282 1.6952 0.2762

f
11

 Ave
SD 
Med

8.39E-06 0 0 0.2463 0.3873 0.7067 4.8262

4.59E-05 0 0 0.0839 0.1302 0.3223 1.7503

6.35E-06 0 0 0.2261 0.3862 0.7336 4.8367

Time 3.2932 2.8535 2.8563 0.3546 0.5968 1.5923 0.2670

f
12

 Ave
SD 
Med

-3.2917 -4.0031 -4.4813 -3.6425 -3.6416 -3.8849 -2.5761

0.3407 0.3283 0.2031 0.3506 0.3245 0.7177 0.2842

-3.5228 -3.9585 -4.03125 -3.6080 -3.5816 -4.0761 -2.5330

Time 3.0262 2.8708 2.8841 0.3629 0.6228 1.6563 0.2943

f
13

 Ave
SD 
Med

3.06E-25 -0.40388 -0.502 -0.5173 -0.0555 -0.4746 3.71E-21

1.63E-24 0.42585 0.5066 0.3841 0.1351 0.4856 7.57E-21

2.57E-25 -0.4357 -0.5300 -0.5908 -4e-109 -0.4141 2.49E-22

Time 2.9542 3.0037 3.0434 0.3744 0.6747 1.7358 0.3612

f
14

 Ave
SD 
Med

-0.3228 -0.9671 -1 3.198e-4 2.95e-4 0.0016 0.0053

0.4564 0.0901 0 2.334e-4 0.00021 0.0008 0.0025

-0.6854 -0.9235 -1 2.325e-4 0.00027 0.0013 0.0052

Time 2.8786 3.0664 3.3025 0.3683 0.6298 1.6352 0.2825
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a faster switching speed for position in binary space. Nevertheless, the solution obtained by HBBA 
incorporating chaotic map is better than that of HBBA_2. Totally, in the six composition benchmark 
functions, HBBA gets best solutions in four functions, and the effectiveness of HBBA in dealing with 
composition benchmark functions is verified.

The convergence curves of best solutions in 30 independent runs for f
15

- f
20

�are shown in Figure 
8. For functions f

15
, f

16
, f

17
, and f

19
, the convergence curves generated by HBBA are significantly 

better than the curves generated by other three algorithms. This also demonstrates the superiority of 
the proposed algorithm.

In summation, in a total of 20 benchmark functions, including unimodal, multimodal, and 
composition functions, HBBA obtains better solutions in 16 functions in terms of average value, 
standard deviation, and median value. For the rest four functions, HBBA ranks in the top two among 
the four algorithms for all the four functions. This achievement announces the superiority of HBBA.

Unit Commitment Problem
In modern power systems, generation sources involve thermal, wind, photovoltaic, and hydroelectric 
power. To ensure the safety and economy of power generation in power systems, unit commitment 
plays an important role. The unit commitment problem (UCP) is a constrained combinatorial 
optimization problem that minimizes power generation cost by determining on/off states of units. 
Under different system and operation constraints, the minimum generator cost is to minimize the 
start-up cost, shutdown cost, and operation cost (Pan et al., 2021). The mathematical model of UCP 
is achieved as follows:

Figure 7. Convergence curves of best solutions for multimodal function ( f f
8 14
- ) (Red-HBBA, Black-BBA, Blue-BPSO, Green-GA)
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Objective Function
The objective of UC aims to minimize the fuel cost and start-up cost when meeting system and 
operation constraints. The fuel cost and start-up cost are provided as (17) and (18):

Fitness C P S C S
f

i

N

t

T

i
t

i
t

it
t
i
t= ( ) +

==
∑∑min

11

	 (16)

Table 9. Simulation results for composition benchmark functions in 30 independent runs

Function HBBA_1 HBBA_2 HBBA BBA BPSO GA binABC

f
15

� Ave
SD 
Med

148.080 17.4913 14.4485 93.2475 194.852 193.668 369.94

27.3737 16.8622 13.8159 64.2902 60.0340 121.913 57.39

148.639 9.5673 6.0678 78.7049 176.038 170.521 321.75

Time 29.282 25.9335 29.6994 1.0244 1.0478 3.25874 0.7059

f
16

 Ave
SD 
Med

118.823 49.8088 36.8855 156.632 146.761 205.679 696.78

8.6719 9.3764 7.4168 31.8847 29.0801 160.985 63.13

118.428 46.6513 36.5638 154.589 140.642 154.868 638.45

Time 27.1188 26.4750 26.3512 1.0095 1.0626 3.29875 0.7273

f
17

 Ave
SD 
Med

538.912 180.266 150.985 149.641 445.776 384.776 726.58

59.025 26.1351 24.9431 38.7091 49.3449 118.031 60.58

516.283 184.015 142.896 152.153 443.398 448.191 657.28

Time 26.2933 27.0835 26.1341 1.0606 1.1056 3.35786 0.9539

f
18

 Ave
SD 
Med

614.693 354.936 345.005 146.948 479.987 588.126 722.61

65.5889 22.4622 11.6124 22.9687 30.194 102.337 64.67

633.192 347.136 344.472 147.049 477.019 639.901 705.65

Time 29.95 33.8932 29.7607 1.0393 1.0724 3.15857 1.1433

f
19

 Ave
SD 
Med

158.089 24.5026 24.1934 166.121 172.082 246.302 604.26

13.408 7.5069 5.9879 49.8056 64.2674 183.534 52.72

156.185 24.6721 24.4591 163.111 140.993 218.013 589.78

Time 29.9704 29.7138 34.1758 1.0120 1.0594 3.04582 0.8889

f
20

 Ave
SD 
Med

589.908 496.565 485.319 152.812 691.650 914.537 610.83

21.2738 38.9557 37.8245 33.6342 149.626 12.3219 57.06

588.957 513.176 510.032 145.539 607.977 908.362 582.39

Time 29.8742 30.5417 30.7456 1.0124 1.0649 3.08324 0.6916
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where S
i
t  is the on/off status of unit i  at time t ; C P

f i
t( )  achieves total fuel cost; P

i
t  is the active 

power of unit i  at time t ; C t
it 

is the start-up cost at time t ; T  and i  are the number of scheduling 

time and generation unit; and a b c
i i i
, ,  are respectively the cost coefficients of units; C

it
hot and C

it
cold  

imply hot start-up cost and cold start-up cost, respectively; T
ioff,

represents de-committed time of 

unit i ; Cold
i
 is the cold start hours of unit i  andT

idown
min

,
 is the minimum time between two consecutive 

commitment generation units.

Constraints

1. 	 Load constraints: The total generator power from all committed units must meet the hourly load 
demand, as following:

Figure 8. Convergence curves of best solutions for composite function ( f f
15 20
- ) (Red-HBBA, Black-BBA, Blue-BPSO, Green-GA)
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where PDt
sys 

 represents the total generation load demand at hour t .

2. 	 Spinning reserve constraint: It is necessary to immediately offer redundant power generation, 
known as spinning reserve, which is triggered by the failure of the working unit or an unexpected 
surge in load demand. The spinning reserve is expressed as:

S P PD P
i
t

i

N

i sys
t

R
t

=
∑ ≥ +

1
(max)

	 (20)

where P
R
t  implies the spinning reserve at hour t .

3. 	 Generation power limits: Each generation unit in committed has a output limit, which is 
given by,

S P P S P
i
t
i i

t
i
t
i(min) (max)

£ £ 	 (21)

where P
i(min)

and P
i(max)

 are minimum and maximum generation limit of unit i , respectively.

4. 	 Minimum up/down time constraints: Because of the minimum up/down time constraint, once 
each unit is online/offline, it cannot be immediately shut down/started. The minimum up/down 
time constraints are expressed as:
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S T T
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where S
i
t+1 is the status of unit i at hour t +1 .

In practice, UCP is a combinatorial optimization problem including discrete variables and 
continuous variables, namely, ‘determining the generator state’ and ‘economic dispatch’. The proposed 
HBBA is employed to determine the schedule state of generation in binary space, and the Lambda-
iteration method (Singhal et al., 2014) is adopted to solve economic dispatch in continuous space. 
These test systems achieve 10-unit, 100-unit. The load demand and characteristics of 10-unit are 
taken from Kamboj et al. (2016). The algorithm parameters are the same as the above in Section 4.

To verify the effectiveness of the proposed HBBA, the comparison of both HBBA and other 
well-known methods for 10 units UCP is provided as Table 10. The comparison methods have EP 
(Juste et al., 1999), GA (Kazarlis et al., 1996), SA (Simopoulos et al., 2006), BPSO (Z. Yang et al., 
2017), BLPSO (Z. Yang et al., 2017), Enh-hGADE (Trivedi et al., 2015), iDA-PSO (Khunkitti et al., 
2019), BFMO (Pan et al., 2021), BCSO (Y. Wang et al., 2019) and BBA (Reddy et al., 2017). Form 
Table 10, HBBA and BBA have the lowest cost and the same value as all of the compared algorithms 
(563937.307 $). The HBBA solution outperforms the BBA solution in terms of both average and 
maximum cost. Furthermore, the average execution time of HBBA for 30 independent runs is 19.068 
s, which is 24.1% faster than that of BBA. When compared to other algorithms, HBBA performs well 



International Journal of Swarm Intelligence Research
Volume 15 • Issue 1

25

in terms of minimum, average, maximum, and average running time. For example, HBBA performs 
best in terms of minimum and average values (563937.307 $, 563976.735 $). HBBA ranks second 
among all pairs of algorithms in terms of maximum value and average running time. Based on the 
above analysis, the superiority of HBBA in the application of the power system unit commitment 
problem is verified.

To further illustrate the effectiveness of HBBA on large-scale UCP problems, 100-unit is 
examined, as shown in Table 11. From Table 11, it can be clearly seen that the best solutions in terms 
of minimum, average, and maximum are obtained by HBBA. Specifically, the minimum obtained by 
HBBA is able to save 8140.609$, 17701.609$ and 14149.609$ per day, compared to the minimum 
obtained by EP, GA, and SA. In addition, the average execution time of EP, GA, and SA are nearly 
20, 51, and 2.2 that of HBBA, respectively. For BCSO, BPSO, BLPSO, BGWO and BFMO, the 
solutions obtained by HBBA are best. As for BBA, the average cost of HBBA is 96.8% of that of BBA, 
despite the fact that the average execution time of HBBA is longer. In conclusion, the effectiveness 
of HBBA is validated for large-scale UCP problems.

Table 10. Comparison cost results of HBBA for 10-Unit test problem

Algorithm Minimum ($) Average ($) Maximum ($) Time (s)

EP 564551 565352 566231 100

GA 565825 - 570032 221

SA 565828 565988 566260 3.35

BPSO 563955.99 564000.40 564053.73 25.45

BLPSO 563977.01 563982.09 563987.16 22.09

iDA-PSO 565807.309 565827.014 565891.759 231.31

Enh-hGADE 563938 563997 564261 26

BFMO - 564864 - -

BBA 563937.687 564568.853 565205.721 25.130

HBBA 563937.307 563976.735 564036.467 19.068

Table 11. Comparison cost results of HBBA for 100-unit test problem

Algorithm Minimum ($) Average ($) Maximum ($) Time (s)

EP 5623885 5633800 5639148 6120

GA 5627437 - 5637914 15733

SA 5617876 5624301 5628506 696

BCSO 5610281.71 5610624.74 5610986.92 85.01

BPSO 566545.61 5482671.50 5692414.71 112.45

BLPSO 5655610.14 5655610.14 5655610.14 113.54

BGWO 5628975 5637659 5643899 836.54

BFMO - 564864 - -

BBA 5787294.136 5796318.181 5803759.278 179.162

HBBA 5609735.391 5614292.836 5618754.891 305.208
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CONCLUSION

This paper gives a new hybrid binary bat algorithm (HBBA) by integrating a modified random black 
hole model, and a time-varying V-shaped transfer function is also proposed to further improve the 
performance of HBBA. The superiority of the proposed HBBA is verified by three types of benchmark 
functions and an engineering optimization problem. For further studies, different applications by 
HBBA can be investigated such as feature selection and mixed-integer linear programming. The 
modified random black hole model and the proposed time-varying V-shaped transfer function can 
also be applied to other heuristic algorithms, and this is left as an interesting future work.
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